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Abstract—This paper explores the application of graph theory, 

a cornerstone of discrete mathematics, in analyzing protein 

interaction networks to uncover insights into complex diseases. By 

modeling proteins as vertices and their interactions as edges, we 

construct weighted and directed graphs to represent intricate 

biological networks. We employ graph-theoretic metrics, such as 

centrality measures, clustering coefficients, and shortest path 

algorithms, to identify key proteins and interaction patterns critical 

to disease progression. To address the complexity of large-scale 

networks, we introduce an approach on the understanding of PPI 

(protein interaction networks) using a graph theory, enabling 

researchers to explore network structures intuitively. Our approach 

is validated through case studies on diseases like cancer and 

neurodegenerative disorders, demonstrating how graph-based 

analyses reveal novel biomarkers and therapeutic targets. This 

work bridges discrete mathematics and bioinformatics, offering a 

scalable and interpretable method for deciphering the molecular 

basis of complex diseases. 

Keywords—protein interaction, medical, bioinformatics, graph, 

mathematics 

I. INTRODUCTION 

Complex diseases, such as cancer, Alzheimer's, and 

diabetes, arise from intricate interactions among numerous 

biological components, particularly proteins, which form 

dynamic networks governing cellular processes. 

Understanding these protein interaction networks is crucial for 

unraveling disease mechanisms and identifying potential 

therapeutic targets. Graph theory, a fundamental branch of 

discrete mathematics, provides a robust framework for 

modeling and analyzing such networks by representing 

proteins as vertices and their interactions as edges. This 

approach enables the application of mathematical tools to 

quantify network properties, detect critical nodes, and uncover 

hidden patterns that contribute to disease pathology. However, 

the scale and complexity of protein interaction data pose 

significant challenges for analysis and interpretation, 

necessitating advanced computational methods and intuitive 

visualization techniques. In this paper, we propose a graph-

theoretic approach to analyze protein interaction networks 

associated with complex diseases, integrated with an 

interactive visualization platform. By leveraging metrics such 

as degree centrality, betweenness centrality, and clustering 

coefficients, alongside dynamic graph layouts, our method 

facilitates the identification of key proteins and interaction 

subnetworks. Through case studies on select complex 

diseases, we demonstrate how this discrete mathematics-based 

framework enhances our understanding of molecular 

mechanisms and supports the discovery of novel biomarkers, 

offering a scalable and interpretable solution for 

bioinformatics research. 

II. THEORETICAL BASIS 

A. Graph Theory 

A.1. Graph Definition 

In the realm of discrete mathematics, a graph is a 

fundamental mathematical structure used to model 

relationships between pairs of objects. Formally, a graph is 

defined as a pair G = (V, E), where V is a finite, non-

empty set of vertices (also called nodes) and E is a set of 

edges, each representing a connection between a pair of 

vertices. This structure captures the essence of pairwise 

relationships in a discrete, abstract framework, making it a 

versatile tool for studying complex systems across various 

domains, such as computer science, biology, social 

networks, and logistics. 

A.2. Graph Components 

1. Vertices (V) 

The vertices, or nodes, represent the entities 

within the system being modeled. For example, in a 

protein interaction network, each vertex could 

represent a protein. The set V is finite, ensuring that 

the graph is manageable within the discrete 

mathematics framework. 

 2. Edges (E) 
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The edges represent the relationships or 

interactions between pairs of vertices. Each edge in ( 

E ) is typically denoted as a pair (U, V), where (U, V 

in V ). Edges can be: 

- Undirected: If the relationship is mutual or 

symmetric (e.g., a friendship in a social 

network), the edge (U, V) is equivalent to (U, V), 

and the graph is called an undirected graph. 

- Directed: If the relationship is one-way (e.g., a 

regulatory interaction in a biological network), 

the edge (U, V) indicates a directed connection 

from U to V, and the graph is called a directed 

graph (or digraph). 

 

Figure 1. Directed graph illustration 

source: geeksforgeeks 

- Weighted: Edges may carry weights to represent 

the strength, cost, or probability of the 

relationship (e.g., the confidence level of a 

protein interaction). In this case, the graph is 

called a weighted graph, and each edge is 

associated with a numerical value. 

 

Figure 2. Weighted graph illustration 

source: geeksforgeeks 

- Unweighted: If no weights are assigned, all 

edges are assumed to have equal significance. 

A.3. Types of Graph 

Beyond the basic distinction between graphs based on 

their edges, there are several types of graphs based on 

structural properties that are essential in the study of real-

world systems like the topic of this paper, which is: 

 

- Simple Graph: A graph with no loops (edges 

connecting a vertex to itself) and no multiple 

edges between the same pair of vertices. 

 

Figure 3. Simple Graph 

Source: Wolfram MathWorld 

 

- Multigraph: A graph that allows multiple edges 

between the same pair of vertices. This can be 

useful in biological contexts where multiple 

types of interactions exist between the same 

proteins. 

 

Figure 4. Directed multigraphs 

Source: Wolfram MathWorld 

 

- Cyclic and Acyclic Graphs: A cyclic graph 

contains at least one cycle (a closed path), while 

an acyclic graph does not. A Directed Acyclic 

Graph (DAG) is particularly important in 

modeling hierarchical processes such as gene 

regulation. 

 

Figure 5. Cyclic and acyclic graph 

source: Medium documentation 

 

- Connected and Disconnected Graphs: A graph 

is connected if there is a path between every pair 

of vertices. In biological networks, disconnected 

components may represent isolated functional 

modules or data artifacts. 

 

Figure 6. Connected and disconnected graph 
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source: Research Gate 

 

- Complete Graph: A complete graph is one in 

which every pair of distinct vertices is connected 

by a unique edge. While rare in biological 

systems, it serves as a theoretical extreme in 

network density. 

 

Figure 7. Complete graph 

source: Research Gate 

A.4. Properties of Graph 

Understanding key properties of graphs is essential 

for analyzing the structure and function of networks: 

1. Degree 

The degree of a vertex is the number of edges 

incident to it. In directed graphs, we distinguish 

between: 

o In-degree: Number of edges coming 

into a node. 

o Out-degree: Number of edges going 

out from a node. 

2. Path and Distance 

A path is a sequence of vertices connected by 

edges. The distance between two vertices is the 

number of edges in the shortest path connecting 

them. 

3. Diameter 

The diameter of a graph is the longest shortest 

path between any two vertices. It gives a sense of 

how "far apart" the nodes in a network can be. 

4. Clustering Coefficient 

Measures the degree to which nodes in a graph 

tend to cluster together. High clustering is 

common in biological networks, indicating 

modular structure. 

5. Adjacency Matrix 

A matrix representation of a graph where each 

element indicates the presence (and optionally 

weight) of an edge between vertices. It is used in 

computational implementations and algorithms. 

6. Graph Density 

Graph density is defined as the ratio of actual 

edges to the maximum possible number of edges. 

Biological networks are typically sparse (low 

density). 

 

A.5. Special Graphs Related 

1. Trees: A special kind of acyclic connected 

graph. Though not commonly used for PPI 

networks, trees are useful in evolutionary 

biology (phylogenetics) and hierarchical 

clustering. 

2. Subgraphs: A subgraph is a subset of a graph’s 

vertices and edges. In biology, subgraphs often 

represent functional modules or pathways. 

3. Motifs: Motifs are recurring, statistically 

significant subgraph patterns. For example, the 

feed-forward loop is a common motif in gene 

regulatory networks. 

 

B. PPI 

B.1. PPI Definition 

Protein-Protein Interaction (PPI) refer to the 

physical or functional associations between two or 

more protein molecules that enable biological 

processes such as signal transduction, metabolic 

regulation, and structural assembly. These 

interactions form the basis of complex intracellular 

networks that govern cellular behavior and 

organismal function. PPI data are typically derived 

from high-throughput experimental techniques—such 

as yeast two-hybrid screening and mass 

spectrometry—as well as computational predictions, 

and are represented as undirected or directed graphs 

in network analysis. 

 

III. PPI APPROACH USING GRAPH THEORY 

The elucidation of molecular mechanisms underlying 

complex diseases such as cancer, neurodegenerative disorders, 

and autoimmune conditions remains a fundamental challenge 

in biomedical research. Traditional gene-centric approaches 

often fall short in capturing the intricate, system-wide 

interactions that drive these diseases. Protein-protein 

interaction (PPI) networks provide a systems-level framework 

for studying such biological complexity, representing proteins 

as nodes and their interactions as edges in a graph structure. 

However, the high dimensionality and dense connectivity 

of PPI networks pose significant analytical challenges. 

Without proper computational techniques, identifying 

functionally relevant substructures, key regulatory proteins, or 

disease-associated modules becomes infeasible. Moreover, 

conventional static visualization methods fail to support 

intuitive exploration, especially when dealing with large-scale 

networks where interpretability is critical. 

There is a pressing need for a graph-theoretical framework 

that can effectively model, analyze, and interpret PPI networks 

in the context of complex diseases. Additionally, enabling 
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interactive visualization is essential to bridge computational 

analysis with domain expertise, facilitating biological 

discovery and hypothesis generation. This study addresses 

these gaps by integrating graph-theoretical methods with 

interactive visualization tools to enhance the analysis and 

interpretation of disease-related PPI networks. 

Finally, because we already understood the basic concept of 
PPI, now is the understanding approach using the graph theory. 

A. Understanding The PPIs 

Protein-protein interactions (PPIs) are fundamental to 

virtually all biological processes, including signal 

transduction, metabolic pathways, and cellular regulation. 

Understanding the complex web of interactions among 

proteins is essential for elucidating the molecular 

mechanisms underlying both normal physiology and 

complex diseases such as cancer, neurodegenerative 

disorders, and metabolic syndromes. 

A powerful approach to studying PPI networks is 

through the lens of graph theory. In this framework, 

proteins are represented as nodes (vertices), and their 

interactions are depicted as edges (links) connecting these 

nodes. This abstraction enables the application of a wide 

range of mathematical and computational tools to analyze 

the structure and dynamics of biological networks. 

A.1. Graph Construction 

A PPI network is typically constructed from 

experimental or predicted interaction data, where 

each protein is a node and each interaction is an edge, 

often weighted by interaction strength or confidence. 

The resulting graph can be undirected or directed, 

depending on the nature of the interactions. In our 

implementation, we use an undirected, weighted 

graph to represent the PPI network, where edge 

weights correspond to the strength of protein 

interactions. 

 

Figure 8. PPI example using graph construct 

source: Author 

 

 

Parameter Value Biological 
Significance 

Total Proteins 

(nodes) 

17 Core cancer 

pathway 

proteins 

Total 

Interactions 

(edges) 

27 Functional 

protein 

associations 

Network 
Density 

0.1985 Moderate 
connectivity 

level 

Avg 
Clustering 

Coefficient 

0.491 High modular 
organization 

Connected 

Components 

1 Single 

functional 
network 

Disease-

associated 

Proteins 

10 (58.88%) High disease 

relevance 

Table 1. PPI network figure 8 summary 

The PPI network construction demonstrates the 

fundamental principles of representing biological 

interactions as mathematical graphs. The process begins 

with an empty graph structure and systematically builds 

the network through two key steps (example given based 

on the author testcase (figure 8)): 

1. Node Addition: 17 unique proteins are added as 

vertices, representing the fundamental units of 

the biological system 

2. Edge Addition: 27 weighted interactions are 

established, where edge weights (0.33-0.95) 

represent interaction strength or confidence 

scores 

A.2. Network Analysis 

The constructed PPI network exhibits several 

important topological properties that are 

characteristic of biological networks (example given 

based on the author testcase (figure 8)): 

- Network Density: 0.1985 indicates a moderately 

connected network where approximately 19.85% 

of all possible protein pairs interact 

- Clustering Coefficient: 0.4961 demonstrates a 

high tendency for proteins to form triangular 

connections, indicating functional modules 

- Connectivity: Single connected component with 

all 17 proteins suggests a cohesive biological 

system 

The integration of disease association data reveals 

critical insights into the relationship between network 

topology and disease mechanisms. Ten proteins 

(58.8% of the network) are directly 

associated with various cancers and genetic disorders, 
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highlighting the central role of these interactions in 

disease pathogenesis. 

B. Implementation for Solutions 

B.1. User Input and Data Management System 

Multi-Modal Data Input Interface: The 

implementation provides three distinct methods for 

users to input their protein-protein interaction data, 

ensuring accessibility for users with varying technical 

expertise and data formats: 

- Interactive Manual Input: The system offers 

an intuitive command-line interface that guides 

users through the data entry process. Users can 

input protein interactions one by one using a 

standardized format: 

- File-Based Input (CSV Format): For users with 

existing datasets, the system supports direct 

loading from CSV files. This feature enables: 

o Batch processing: Multiple interactions 

loaded simultaneously 

o Data validation: Automatic format 

checking and error handling 

o Flexibility: Support for various CSV 

structures with at least three columns 

o Error recovery: Graceful fallback to 

sample data if file loading fails 

- Sample Data Demonstration: For educational 

and testing purposes, the system includes pre-

loaded sample data featuring 27 protein 

interactions across multiple cancer pathways, 

providing immediate demonstration of system 

capabilities. 

 

Figure 9. Data input demostration on code 

Source: Author 

 

 

Figure 10. Input proteins and interactions with strength 
testcase (manual) 

Source: Author 

 

 B.2. Storing Major Diseases 

The system incorporates an extensive disease-

protein association database containing 20 major 

cancer-related proteins with detailed annotations. 

Each protein entry includes:  

o Disease associations: Multiple disease 

types per protein 

o Confidence scores: Reliability metrics 

(0.70-0.95 range) 

o Pathway information: Biological 

pathway classification 

o Functional descriptions: Protein role 

in cellular processes 

 

 

Figure 11. Snipped code databases (hardcoded) 

source: Author 

 

The database encompasses proteins from major 

cancer pathways: 

o Tumor suppression: TP53, MDM2 

o DNA repair: BRCA1, BRCA2, RAD51 

o Growth factor signaling: EGFR, 

HER2, PI3K, AKT 

o Cell cycle regulation: CDK4, CDK6 

o Apoptosis regulation: BAX, BCL2 

o MAPK signaling: KRAS, BRAF 
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B.3. Network Construction and Analysis 

The system automatically constructs the PPI 

network from user input through a systematic 

process: 

 

Figure 12. Node and edge addition/construction 

source: Author 

 

The system implements a sophisticated automated 

network construction pipeline that transforms user-

provided protein interaction data into a 

comprehensive graph representation. The process 

begins with the systematic addition of nodes and 

edges, where each protein interaction is converted 

into a weighted edge within the network structure. 

The system employs a robust data validation 

framework that ensures data integrity throughout the 

construction process, maintaining accurate interaction 

counts for each protein while preserving the critical 

interaction strength information as edge weights. 

During network construction, the system performs 

real-time calculation of fundamental network 

properties, providing immediate feedback on the 

structural characteristics of the emerging network. 

This automated approach eliminates manual 

intervention while ensuring that all topological 

relationships are accurately captured and stored for 

subsequent analysis. 

B.4. Intelligence Disease Prediction Algorithm 

The disease prediction system represents a 

sophisticated integration of network topology with 

biological knowledge, creating a multi-dimensional 

assessment framework for disease risk evaluation. 

The core algorithm combines centrality measures 

with disease association confidence scores to 

generate comprehensive risk assessments for each 

protein and associated disease. 

The risk score calculation integrates network 

position indicators, such as degree and betweenness 

centrality, with biological relevance metrics derived 

from the disease database. This multi-dimensional 

approach ensures that both the topological 

importance of a protein within the network and its 

known biological association with diseases are 

considered in the prediction process. 

 

 

Figure 13. Intelligence disease prediction algorithm 

source: Author 

B.5. Centrality Comparision and Visualization 

The centrality comparison plots provide multi-

metric analysis of the most important proteins in the 

network, comparing degree centrality against 

betweenness centrality to reveal different aspects of 

protein importance. This visualization focuses on the 

top proteins identified through the analysis, providing 

clear statistical visualization of metric differences 

and highlighting proteins that may be important in 

different network contexts. 
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Figure 14. The visualization and export system 

Source: Author 

 

C. Real Case 

User is given the choice to complete the manual user 

input and the system will return as follows with the data 

input given: 

 

Figure 15. CSV sample data 

source: Author 

 

Based on the sample data given, the results shown as network 

visualization, predictions, and  user-disease analysis with top proteins 
relevant. 

 

Figure 16. Network testcases 

source: Author 

 

 

Figure 17. User disease predictions 

source: Author 

 

 

Figure 18. Centrality analysis for top proteins relevant based on the disease 

source: Author 

 

 

IV. CONCLUSION 

This study demonstrates the successful application of 

graph theory principles to protein-protein interaction network 

analysis, providing a comprehensive framework for 

understanding complex disease mechanisms through network 

topology. The implementation of a user-friendly analysis 

system that integrates multi-dimensional centrality measures, 
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community detection algorithms, and disease prediction 

capabilities has proven effective in identifying key hub 

proteins and predicting disease associations with high 

confidence. The automated network construction pipeline, 

coupled with sophisticated risk assessment algorithms that 

combine topological centrality with biological relevance 

scores, enables researchers to systematically analyze PPI 

networks and extract meaningful biological insights. 

The results from our comprehensive test case, involving 

17 proteins across multiple cancer pathways with 27 weighted 

interactions, validate the effectiveness of the graph theory 

approach in revealing network structure-function 

relationships. The system successfully identified critical hub 

proteins such as PI3K, TP53, and AKT, detected functional 

communities corresponding to known biological pathways, 

and generated disease predictions that align with established 

biological knowledge. The integration of network analysis 

with disease association databases provides a powerful tool for 

drug target identification, therapeutic strategy development, 

and personalized medicine applications. The publication-

quality visualizations and standardized data export capabilities 

ensure that the analysis results are accessible to both 

computational biologists and experimental researchers, 

bridging the gap between theoretical network analysis and 

practical biomedical applications. This work establishes a 

robust foundation for future research in network-based disease 

analysis and demonstrates the potential of graph theory as a 

transformative approach for understanding complex biological 

systems and their role in human disease. 
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Source code: https://github.com/inRiza/PPIs.git 
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